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The thermoacoustic pressure oscillations associated with heat transfer in a 
turbulent flow of a fluid at supercritical pressure is investigated theoreti- 
cally. The characteristics of the thermoacoustic pressure oscillations as a 
function of the regime parameters of the process are determined. 

The heat-transfer process in a fluid at supercritical pressure in the case of turbulent 
flow of a heat-transfer medium and large heat fluxes is often accompanied by thermoacoustic 
pressure oscillations (TAPO). This effect is observed when the temperature of the heating 
surface acquires pseudocritical values and the flow core has a temperature far from the 
critical. Calculations show that a fluid layer with a low sound velocity exists near the 
wall in this regime. On the basis of the conjecture that the existence of a wall layer of 
fluid with an elevated compressibility is the cause of the onset of TAPO and the enhancement 
of heat transfer, it has been possible to formulate physical and mathematical models of the 
process in application to ducts of constant cross section with a constant heat ihput along 
its length. Formulas describing the dynamical and thermal fields in the first approximation 
and taking into account the variation of the sound velocity within the duct cross section are 
proposed in [i]. The results of a theoretical determination of the domain of instability of 
the heat-transfer process are given in [2, 3]. Relationships have been established between 
the frequencies and amplitudes of the oscillations, on the one hand, and the hydrothermo- 
dynamic conditions existing in a constant duct, on the other [3]. The influence of the sound 
field on the heat transfer has been investigated [4, 5]. 

Real heat exchangers frequently have heating elements of complex geometrical configura- 
tion in which the energy input varies in an arbitrary way. To determine the velocity and 
pressure fields in the general case, it is necessary to solve a multidimensional nonlinear 
problem, which is attended by mathematical difficulties. However, the hydraulic lines can be 
treated as one-dimensional of a variable cross section. We assume in this case that the vari- 
ation of the duct area is small over one wavelength of the acoustic disturbance. This condi- 
tion can be written formally as follows: 

1 dF 2~c~ 
~ 1. (1) 

F dx 

We assume that all the parameters of the process can be represented in the form 

z (~) = z~ ~ + z?L ( 2 )  

We consider the steady-state Mach number Mo and the acoustic Mach number M~ = r to be 
small. We assume that the frequencies of the TAPO are so high that the parameters in the wave 
z(i)~ have appreciable transverse gradients only in the immediate vicinity of the wall (~2 >> Ii 

A major simplification of the stated problem is achieved by transforming from the multi- 
dimensional to one-dimensional differential equations by means of integration over the cross 
section of the duct and transformation to the average parameters ~(i). In the integration we 
let 

z(Oz (i) ~ z (0 z(i)  ; ~(oz(i)" ~ ~(~) z ( i ) ,  

where ~(i) is some thermophysical parameter. 

(3) 
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Eguations (3) are approximately valid by the assumption of a weak dependence of z(i): 
and z(1) o on the transverse coordinate outside the acoustic boundary layer and the laminar 
sublayer, which have small relative dimensions. 

Below, we consider the problem 
strict the formulation of the basic 
pressure, and density and to linear 
that the linear-entropy term in the 
energy equation we neglect the work 
basic system acquires the form 

p~ + (po~ + p,) u ' +  u ~  = o, 

o 

ps-, - z ,  (~f)" + 0 : ,  
Po/To/ 

- {ap 
= pofC2sf Pof 2 \ Pot / o 

in the second approximation with respect to el. We re- 
system of equations to squared terms in the velocity, 
terms in the entropy. This is associated with the fact 
equation of state is a second-order small term. In the 
done by the forces of viscosity and pressure. Then the 

(4) 

(5) 

(6) 

(7)  

where 

~T = X~-----t---~ " ~n OT1 dH (8)  
po1Toy O n 

3UL dH. (9) 
an 

The fundamental hypothesis underlying the ensuring arguments is expressed in the inequality 

e ~  1. (10) 

It states that the scale of variation of the duct area is smaller than the scale of the wave 
distortion due to nonlinearity and dissipation. 

The system (4)-(7) enables us to derive the basic equation by a procedure similar to 
that described in [3]. We note that the quantity F in the nonlinear and viscosity terms can 
be taken outside the derivative, because this operation induces terms of the order of e ~ r  
which are neglected. 

From now on we omit the bar over the parameters averaged over the cross section. We 

then obtain 

2 9 
+ c,  ((~,~u')' + (up])') + (G 1) c;r 

Pot Pof 

, 1 r 

~zvs F Pot Pof F ' 

4 xj (~ - -  l) 
where b= ~+ ~ ~2+ cry 

We investigate Eq. (ii) by the multiple-scale method [6]. 
tions and variables 

We introduce the new func- 

xm=e'~x, m = 0 ,  I . . . . .  N, 

N-}-I 

Z 1 - -  ~ 8 r ~ Z m o ( X o ,  X 1 . . . .  , XN ,  t ) .  

(12) 

(13) 

Consolidating terms of the order of cx and r we obtain an equation describing the 
influence of the duct geometry on wave propagation: 
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l 02 (U~oF) _~ 1 dF a (Ulo F) 02 (UI~ - -  O. 
c~ c)t~ F dxo Ox o Ox~ (14) 

We seek a solution of Eq. (14) in the form of a series in the TAPO frequency: 

U~oF = exp (ira (t -- ~ (Xo))) ~-~ Hk (x. xo) (io) -~. 
k=o 

(15) 

tion 
Substituting (15) in (14) and equating terms in like powers of im, we arrive at the solu- 

UIO = Z (Hln (Xl) %1~ (XO) exp (in~) + H~n (xO %~,~ (Xo) exp (in~)), (16) 

where 

x0 

c~----L-~ !" D (q) d~l %~,~ (xo) = (1 -t-" i(--1) i 2no) 
4n~~ \ 2 -  o 

1 d2~" 3 1 / d F '  ~ "~ 
-fi= F/Fo. D(xo)= f f  dx~ 4 i~.~ I - - I \  dxo ] '  

We n o t e  t h a t  t he  q u a n t i t y  Fo in  t he  f o r e g o i n g  e x p r e s s i o n  i s  a r b i t r a r y .  

To o b t a i n  the  s econd-app rox iana t ion  e q u a t i o n ,  i t  i s  n e c e s s a r y  to  s u b s t i t u t e  e x p r e s s i o n s  
(12) and (13) i n  (11) and to  c o n s o l i d a t e  te rms  of  t he  o r d e r  of  ca~.  In  t r a n s f o r m i n g  t h e  non-  
l i n e a r  components  o f  e x p r e s s i o n  (11) we can  r e g a r d  U~o and P~o as  depend ing  o n l y  on T j .  The 
d i f f e r e n t i a t i o n  of  t he  f u n c t i o n  •  w i t h  r e s p e c t  to  xo and of  t h e  f u n c t i o n  Hjn w i t h  r e s p e c t  
to  xa i n d u c e s  on the  r i g h t - h a n d  s~de of  (11) te rms  of  t he  o r d e r  of  r162 and r  which a r e  
d i s r e g a r d e d .  S e t t i n g  O~o = U ~ ( x t ,  T~) + U~a(x~, ~a) and c a r r y i n g  ou t  t r a n s f o r m a t i o n s  s i m i -  
l a r  to  t h o s e  i n  [3 ] ,  we o b t a i n  t h e  e q u a t i o n  

4 O*U"~ = OL~(Un) OL,(Ulo.) +l~(Un, UI~), (18) 

where 

L1 (U~) = 2 OU~i F I + 1 U~i aU~j__ 7-' (--1)1 ba) O2U~j 
af~ c~i a~j polC~j ate. 

__. y -  1 ar 1 cP s 
a,lc~/F a.~j + ( - - 1 ) i ~ ~ ,  ] =  1, 2; 

po]CO F 

- - (  O~U~ * . O~Ull ) 

(19) 

We assume that the functions Uij are bounded together with their primitives and first 
and second derivatives; Cv and ~8 are also bounded and can be represented in the form ~j = 
Cj~(x~, T~) + Cja(xl, ra). Under these conditions it can be proved that Eq. (18) is equiv- 
alent to three equations, two of which are analogous to the equations for nonlinear travel- 
ing waves: 

(20) 
Ll(Ull) = o, L~(UI~)= o, 

and one equation that characterizes the interaction of traveling waves: 

4 O~U2~ = 13(Un, U12). 
0~i0% 

We note that the indicated proof establishes a fact equivalent to the elimination of 
secular terms from the expansion by the multiple-scale method. 

Equations (20) differ from their counterparts in [3] by the inclusion of derivatives of 
the form ~U1j/31~, which make it possible to treat the expressions Cv and Ca as functions of 
the coordinate xl, i.e., to take into account their variation along the length of the duct. 
This amounts to taking into account the variation of the energy input. 
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The functions ~ and ~e characterize the thermal and dynamical interaction of the acous- 
tic disturbance with the heating surface and can be determined from the known two-dimensional 
velocity and temperature fields in a harmonic wave [i]. We assume that the eigenfunctions of 
Eq. (14) are nearly harmonic. The explicit expressions for the required functions, obtained 
on the assumption that the acoustical parameter I T >> I, have the form 

- ~ p o ~ F  2 ~  "]/- n U~ exp (in~s) , (21) 

(Y- I)r  (--I): • 
= ( ~  (~n) + i~  ( ~ ) ) U ~  exp (in~), (22) ~plcsfF 2-~ V / n 

where 

- ( y -  1) T~pcpw % 
~0 ~ 2 1 ' %fTojc# (?~ ~ 73) 

0-1(q) ,~)=-exp(- -qb0(cosqb~-- ( l@ 1 ) s ing '~ ) ;  
{P~ 

1 
O2 (~) = 

r 
( t - -  exp (--r cos q~) - -  exp (--q~,0 (cos % + sin q),0- 

The parameter ~ represents the ratio of the thickness 6~of the laminar sublayer, which 
depends on the local velocity Uo, to the thickness of the acoustic boundary layer, which is 
defined as I/(y1~n) = /2alw/(n~o). We assume that a wave of arbitrary profile is expanded 
in a series in harmonic functions. Then the interaction function can be represented in the 
form of series or integrals. 

Expressions (21) and (22) can be used to write Eqs. (20) in the developed form 

2(__1)i+~ 0I'd_._ j / ' f -I-  1 0M~ 
0x~ 2 0"9 

2~ 

D 02NJ 1 f o ~ ~-  P (xl, "~ - -  ~) Mj (xl, ~) d~ = O, 
o j 

(23) 

where 

P (%1, ~) = ~ 2n(Cnl (;1) sin nn + C~2 (~) cos nn); 
n= 1 

2 ~ - ~  ( - ( I  + Zo401~)+ i(1 --  • 

C a l c u l a t i o n s  show t h a t  t h e  t e r m  c o n t a i n i n g  t h e  f a c t o r  Do = b ~ / ( p o f c a s t )  
by virtue of its smallness. 

We seek a solution of Eqs. (23) in the series form (16), in which we take Xjn = I//F. 
The inclusion of the terms rejected in expressions (17) induces terms of the order of eatea 
in the second-approximation equations (23). The substitution of expression (16) in (23) 
yields the system of ordinary differential equations 

2(__1)i+1 dHin in F s +  1 QJ~--inHj,~Cn = 0, ] = I, 2, (24) 

where 

can be neglected 

Qi, 2~-~ Z HjvHr~ + ~ " * = Hj,,~Hiz, 
p @ h = 2 r - - . 1  m - - l = 2 r - -  1 

H i~ �9 

p -] h : 2 r  m - - l : 2 r  
p ~=h  

(25) 
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The system (24) is solvable, subject to specification of the boundary conditions. We 
consider the elementary case where the duct contains two obstacles, each of which provides 
total internal reflection of the propagating wave. We assume for definiteness that the ends 
of the duct with the coordinates iI = 0 and i~ = ito are closed. Then the boundary condi- 
tions take the form 

H2n (0) ..... Hj~ (0), (26)  

H=~ (~o) = H ~  (~o) exp (--2/n~o).  
(27) 

We now estimate the order of magnitude of the variation of the quantities Hjn in a sec- 
tion of the duct of length Xxo. We consider the steady-state wave process, where the ampli- 
tude of the oscillations does not depend on the initial disturbances (limit cycle). Then 
the terms of Eqs. (24) must be of the same order of smallness, which means that the following 
estimates are valid: 

A H .  xlo o F - -  - 

- - -  --, n (% Ij 5 , ,  [[ - -  - F n �9 1 0 - % o .  Hi, ~c~i" (28)  

Expressions (28) are real for small n and have been derived on the assumption that 
ICI § 0 for the higher harmonics. Hence we infer that the variation of the first-harmonic 
amplitudes is small for a duct having a height of the order of 5,10 -a m and a length of the 
order of one meter. This fact permits us to represent the functions Hjn as the sum of a 
constant term and a small variable increment in i:: 

HJn (Xl) = H.inO -i" HiT~t (70, max lHj~l [ = e3 ~ 1. (29)  
I H;.o[ 

Substituting the expansions (29) in Eqs. (24), neglecting small terms of the order of 
E3 and higher, and then integrating, we arrive at the expressions 

Hj~(x~)=(_l)i+~ in ( Fj+l x i ) 
" - 2 2 Q~,,oOo (, '~,)x,  + Hj~o. 5~ (~) d~ , 

0 

(30) 

in which 

xl ! 
X1 0 

The quantities Qjno are constants and must be evaluated according to Eqs. (25), in which it 
is required to substitute Hjno for Hjn. To compute the functions Hjn~(~1) , it is necessary 
to determine the quantities Hjno , which can be obtained from the system of nonlinear algebraic 
equations deduced from the boundary conditions (26) and (27). The substitution of (29) and 
(30) in (26) leads to the conclusion that Htno = H2no, Q:no = Qano, and Htnt(xt) = --H:n1(x~). 
Now condition (27) takes the form 

H,~, (Tao) --. H1no i tg k.nT, o --: 0. (31) 

It is readily shown that a standing wave can occur only when the condition k o x t o  = m~, 
m = i, 2, 3, ..., is satisfied. Otherwise the quantity tan (konxxo) will not be small for 
sufficiently large n, thus contradicting inequality (29), which follows from the requirement 
that the solution be independent of the initial conditions. Consequently, the equality 
H,n~(X,o) = 0 follows from (31), and from the solution (30) we obtain an algebraic system 
governing the constants Hjno: 

where 

Q:,,o = C,Hino, n := 1, 2, . . . ,  N, (32)  

xto 

C. = _ - -1  i 6 ~ ] / P r ~  
Xlo (F s + 1) % 

In the derivation of (32) we set 

(--(1 + ~o&Ol (~p.)) + i (I - -  • 4o~(,p.))) a Z  (33) 

qO0 (~Io) = i. (34) 
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Equation (34) is the equation for the determination of Fo, i.e., the scale factor re- 
quired for the single-valued determination of the functions Xjn according to Eqs. (17). 

System (32) has exactly the same fo_rm as the system in [3], which was derived for the 
case of constant values of ~,IT, and • The fundamental problem in relation to system 
(32) is to determine the conditions under which a nontrivial solution exists. It is solv- 
able in finite form only for the case N = 3. The condition for the existence of a non- 
vanishing solution has the form 

1C3 ] ~ Im {C1C2} (Ira {C2C'3} - -  2 Im {C~C3}) - - IC2  I=.(Im {C,C~}) 2 - -  

- -  ~ C ~ C : 3 } ) "  = O.  4 Inn {C1C3} Im {C2C~} Re {C1C2} -- 41 C~ I ~ (Im ~ " 
(35) 

Equation (35) determines the relationship between the functions ~0, IT, and ~: and the 
TAPO frequency in the parameters ~ as deduced from the explicit expressions for C n. The 
known quantity mo can be used to determine the values of the amplitudes of the first three 
harmonics according to formulas given in [3]. We note that the functions x0 and IT depend 
on the distribution of the energy input; the function ~: is determined mainly by the velocity 
distribution of the heat-transfer medium along the duct. 

Determination of the constants Hjno and the frequency ~o completes the solution of the 
general problem of determining the characteristics of a nonlinear standing wave of finite 
amplitude. 

The local values of the harmonic amplitudes are determined by the series (16). Here the 
functions Xjn(X), which depend on the configuration of the duct, are determined according to 
Eqs. (17) from the known values of ~o and Fo. The functions H~n~(X) , which are given by ex- 
pressions (30), describe the influence of the variation of the'heat input and the flow vel- 
ocity of the heat-transfer medium on the local amplitudes of the TAPO. 

NOTATION 

x, t, coordinate and time; U, velocity; P, P, T, S, pressure, density, temperature, and 
entropy ~=, ~3, dynamic viscosity coefficients; Cp, X, a~, a~, isobaric specific heat, ther- 
mal conductivity, and thermal diffusivities of the heat-transfer medium and wall material, re- 
spectively; ap, coefficient of thermal expansion; F, L, area and hydraulic radius of duct; 
~, ~I = ~/L, thickness of laminar sublayer; Cs, m, isentropic sound velocity and angular 
frequency; M, Pr, Mach and Prandtl numbers. Indices: I, unsteady value in wave; 0, steady 

value; f, value in flow core; w, value at wall; BI = /~Pow/(2~=w); ~j = /~/(2ajw); ~,~ = 

- - Jxo/csf); J+~uxj/Csf ~nn 71 61; x = x/L; i = mX/Csf; Cs = Cs/Csf; Tj = w(t + (--I) Mj = (--i) ; 

0.5 

F = i + (~2P/~o=) s (po/C=s); T = r/Tcr; iT = --IT/e/~rw; 4= ~ (~;~ - l)W 

LITERATURE CITED 

I. A.T. Sinitsyn, "Foundation of the acoustical nature of the heat-transfer enhancement 
mechanism for supercritical parameters of the heat-transfer medium," in: Nonlinear Wave 
Processes in Two-Phase Media [in Russian], S. S. Kutateladze (ed.), ITF Sib. Otd. Akad. 
Nauk SSSR, Novosibirsk (1977), pp. 337-346. 

2. A.T. Sinitsyn, "Theoretical determination of the domain of existence of high-frequency 
oscillations in a supercritical fluid," Teplofiz. Vys. Temp., 18, No. 6, 1211-1214 
(1980). 

3. A.T. Sinitsyn, "Determination of the amplitude--frequency response curves of thermo- 
acoustic oscillations in a supercritical fluid," Izv. Sib. Otd. Akad. Nauk SSSR, Ser. 
Tekh. Nauk, No. 2, 81-88 (1979). 

4. V.E. Nakoryakov, A. P. Burdukov, A. N. Boldarev, and P. N. Terleev, Heat and Mass Trans- 
fer in a Sound Field [in Russian], ITF Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1970). 

5. V.V. Sevast'yanov, A. T. Sinitsyn, and F. L. Yakaitis, "Heat-transfer process in the 
supercritical region of the parameters in the presence of high-frequency pressure oscil- 
lations," Teplofiz. Vys. Temp., 18, No. 3, 546-553 (1980). 

6. A.H. Nayfeh, Perturbation Methods, Wiley-Interscience, New York (1973). 

661 


